Formula and Uses in Statistics with a small simple example.


1. Mean (raw scores)

Formula:

Xˉ=ΣXN\bar{X} = \frac{\Sigma X}{N}

Example:
Scores = 10, 15, 20, 25
ΣX=10+15+20+25=70\Sigma X = 10 + 15 + 20 + 25 = 70
N=4N = 4

Xˉ=704=17.5\bar{X} = \frac{70}{4} = 17.5

✅ Mean = 17.5


2. Mean (grouped data)

Formula:

Xˉ=ΣfXΣf\bar{X} = \frac{\Sigma fX}{\Sigma f}

Example:

Class Midpoint (X) f fX
0–9 5 2 10
10–19 15 3 45
20–29 25 5 125

Σf=2+3+5=10\Sigma f = 2 + 3 + 5 = 10
ΣfX=10+45+125=180\Sigma fX = 10 + 45 + 125 = 180

Xˉ=18010=18\bar{X} = \frac{180}{10} = 18

✅ Mean = 18


3. Standard Deviation (SD, grouped data)

Formula:

SD=ΣfX2Σf(ΣfXΣf)2SD = \sqrt{\frac{\Sigma fX^2}{\Sigma f} - \left(\frac{\Sigma fX}{\Sigma f}\right)^2}

Example (same table):

X f fX fX²
5 2 10 50
15 3 45 675
25 5 125 3125

Σf=10\Sigma f = 10, ΣfX=180\Sigma fX = 180, ΣfX2=3850\Sigma fX² = 3850.

SD=385010(18010)2SD = \sqrt{\frac{3850}{10} - \left(\frac{180}{10}\right)^2} =385182=385324=617.8= \sqrt{385 - 18^2} = \sqrt{385 - 324} = \sqrt{61} ≈ 7.8

✅ SD ≈ 7.8


4. Z–score

Formula:

Z=XXˉSDZ = \frac{X - \bar{X}}{SD}

Example:
Mean (Xˉ\bar{X}) = 50, SD = 10, Raw score X=70X = 70.

Z=705010=2010=2Z = \frac{70 - 50}{10} = \frac{20}{10} = 2

✅ Z = 2


5. Raw score from Z

Formula:

X=Z×SD+XˉX = Z \times SD + \bar{X}

Example:
Z = –1.5, Mean = 50, SD = 10.

X=1.5×10+50=15+50=35X = -1.5 \times 10 + 50 = -15 + 50 = 35

✅ Raw score = 35


6. T–score

Formula:

T=50+10ZT = 50 + 10Z

Example:
Z = 2 → T=50+10(2)=70T = 50 + 10(2) = 70.
Z = –1.5 → T=50+10(1.5)=35T = 50 + 10(-1.5) = 35.

✅ T = 70 and 35


7. Degree of freedom (df)

Formula:

df=N1df = N - 1

Example:
If you have 6 values,

df=61=5df = 6 - 1 = 5

✅ df = 5


Post a Comment

Previous Post Next Post

Contact Form